Friday, October 28, 2011

Fighting violent gang crime with math

by Stuart Wolpert

UCLA Newsroom

October 28, 2011

UCLA mathematicians working with the Los Angeles Police Department to analyze crime patterns have designed a mathematical algorithm to identify street gangs involved in unsolved violent crimes. Their research is based on patterns of known criminal activity between gangs, and represents the first scholarly study of gang violence of its kind.

The research appears today on the website of the peer-reviewed mathematical journal Inverse Problems and will be published in a future print edition.

In developing their algorithm, the mathematicians analyzed more than 1,000 gang crimes and suspected gang crimes, about half of them unsolved, that occurred over a 10-year period in an East Los Angeles police district known as Hollenbeck, a small area in which there are some 30 gangs and nearly 70 gang rivalries.

To test the algorithm, the researchers created a set of simulated data that closely mimicked the crime patterns of the Hollenbeck gang network. They then dropped some of the key information out — at times the victim, the perpetrator or both — and tested how well the algorithm could calculate the missing information.

"If police believe a crime might have been committed by one of seven or eight rival gangs, our method would look at recent historical events in the area and compute probabilities as to which of these gangs are most likely to have committed crime," said the study's senior author, Andrea Bertozzi, a professor of mathematics and director of applied mathematics at UCLA.

About 80 percent of the time, the mathematicians could narrow it down to three gang rivalries that were most likely involved in a crime.

More

Read the Paper

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.